
Formal Techniques for Synchronized Fault-Tolerant Systems1Ben L. Di VitoV��GYAN, Inc.30 Research DriveHampton, VA 23666-1325 USA Ricky W. ButlerNASA Langley Research CenterHampton, VA 23665-5225 USAAbstractWe present the formal veri�cation of synchronizingaspects of the Reliable Computing Platform (RCP),a fault-tolerant computing system for digital
ightcontrol applications. The RCP uses NMR-style re-dundancy to mask faults and internal majority vot-ing to purge the e�ects of transient faults. The sys-tem design has been formally speci�ed and veri�edusing the Ehdm veri�cation system. Our formaliza-tion is based on an extended state machine modelincorporating snapshots of local processors' clocks.Key Words { Clock synchronization, correctnessproofs, fault tolerance, formal methods, majority vot-ing, modular redundancy, theorem proving, transientfault recovery.1 IntroductionNASA is engaged in a major research e�ort towardsthe development of a practical validation and veri-�cation methodology for digital
y-by-wire controlsystems. Researchers at NASA Langley ResearchCenter (LaRC) are exploring formal veri�cation asa candidate technology for the elimination of de-sign errors in such systems. In previous reports[Di Vito 1990, Di Vito 1992, Butler 1991], we putforward a high level architecture for a reliable com-puting platform (RCP) based on fault-tolerant com-puting principles. Central to this work is the use offormalmethods for the veri�cation of a fault-tolerantoperating system that schedules and executes theapplication tasks of a digital
ight control system.Phase 1 of this e�ort established results about thehigh level design of RCP. This paper discusses ourPhase 2 results, which carry the design, speci�cation,and veri�cation of RCP to lower levels of abstraction.Complete details of the Phase 2 work are availablein technical report form [Butler 1992].1Third IFIP InternationalWorking Conference on Depend-able Computing for Critical Applications. Mondello, Sicily,Italy. September 14{16, 1992.

The major goal of this work is to produce a ver-i�ed real-time computing platform, both hardwareand operating system software, useful for a wide vari-ety of control-system applications. Toward this goal,the operating system provides a user interface that\hides" the implementation details of the systemsuch as the redundant processors, voting, clock syn-chronization, etc. We adopt a very abstract modelof real-time computation, introduce three levels ofdecomposition of the model towards a physical real-ization, and rigorously prove that the decompositioncorrectly implements the model. Speci�cations andproofs have been mechanized using the Ehdm veri�-cation system [von Henke 1988].A major objective of the RCP design is to enablethe system to recover from the e�ects of transientfaults. More than their analog predecessors, digital
ight control systems are vulnerable to external phe-nomena that can temporarily a�ect the system with-out permanently damaging the physical hardware.External phenomena such as electromagnetic inter-ference (EMI) can
ip the bits in a processor's mem-ory or temporarily a�ect an ALU. EMI can comefrom many sources such as cosmic radiation, light-ning or High Intensity Radiated Fields (HIRF).RCP is designed to automatically purge the e�ectsof transients periodically, provided the transient isnot massive, that is, simultaneously a�ecting a ma-jority of the redundant processors in the system. Ofcourse, there is no hope of recovery if the systemdesigned to overcome transient faults contains a de-sign
aw. Consequently, emphasis has been placedon techniques that mathematically show when thedesired recovery properties are obtained.1.1 Design of RCPWe propose a well-de�ned operating system that pro-vides the applications software developer a reliablemechanism for dispatching periodic tasks on a fault-tolerant computing base that appears to him as a sin-gle ultra-reliable processor. A four-level hierarchicaldecomposition of the reliable computing platform isshown in �gure 1.85

Uniprocessor System Model (US)jFault-tolerant Replicated Synchronous Model (RS)jFault-tolerant Distributed Synchronous Model (DS)jFault-tolerant Distributed Asynchronous Model (DA)jHardware/Software ImplementationFigure 1: Hierarchical speci�cation of RCP.The top level of the hierarchy describes the oper-ating system as a function that sequentially invokesapplication tasks. This view of the operating systemwill be referred to as the uniprocessor model, whichforms the top-level requirement for the RCP.Fault tolerance is achieved by voting the resultscomputed by the replicated processors operating onidentical inputs. Interactive consistency checks onsensor inputs and voting of actuator outputs requiressynchronization of the replicated processors. Thesecond level in the hierarchy describes the operatingsystem as a synchronous system where each repli-cated processor executes the same application tasks.The existence of a global time base, an interactiveconsistency mechanism and a reliable voting mecha-nism are assumed at this level.Although not anticipated during the Phase 1 ef-fort, another layer of re�nement was inserted beforethe introduction of asynchrony. Level 3 of the hi-erarchy breaks a frame into four sequential phases.This allows a more explicit modeling of interproces-sor communication and the time phasing of compu-tation, communication, and voting. The use of thisintermediate model avoids introducing these issuesalong with those of real time, thus preventing anoverload of details in the proof process.At the fourth level, the assumptions of the syn-chronous model must be discharged. Rushby and vonHenke [Rushby 1989] report on the formal veri�ca-tion of Lamport and Melliar-Smith's [Lamport 1985]interactive-convergence clock synchronization algo-rithm. This algorithm can serve as a foundation forthe implementation of the replicated system as a col-lection of asynchronously operating processors. Ded-icated hardware implementations of the clock syn-chronization function are a long-term goal.Figure 2 depicts the generic hardware architec-ture assumed for implementing the replicated sys-

. . . ??
?Interactive ConsistencyDistribution Network. . .InterprocessorCommunication LinkInterprocessorCommunication Link ProcessorReplicateRProcessorReplicate1 Actuators

Sensors
Figure 2: Generic hardware architecture.tem. Single-source sensor inputs are distributedby special purpose hardware executing a Byzantineagreement algorithm. Replicated actuator outputsare all delivered in parallel to the actuators, whereforce-sum voting occurs. Interprocessor communica-tion links allow replicated processors to exchange andvote on the results of task computations. As previ-ously suggested, clock synchronization hardware willbe added to the architecture as well.1.2 Previous E�ortsMany techniques for implementing fault-tolerancethrough redundancy have been developed overthe past decade, e.g. SIFT [Goldberg 1984],FTMP [Hopkins 1978], FTP [Lala 1986], MAFT[Walter 1985], and MARS [Kopetz 1989]. An oftenoverlooked but signi�cant factor in the developmentprocess is the approach to system veri�cation. InSIFT and MAFT, serious consideration was given tothe need to mathematically reason about the system.In FTMP and FTP, the veri�cation concept was al-most exclusively testing.Among previous e�orts, only the SIFT projectattempted to use formal methods [Moser 1987].Although the SIFT operating system was nevercompletely veri�ed [NASA 1983], the conceptof Byzantine Generals algorithms was developed[Lamport 1982] as was the �rst fault-tolerant clocksynchronization algorithm with a mathematical per-formance proof [Lamport 1985]. Other theoreticalinvestigations have also addressed the problems of86

replicated systems [Mancini 1988].Some recent work has focused on problemsrelated to the style of fault-tolerant computingadopted by RCP. Rushby has studied a faultmasking and transient recovery model and createda formalization of it using Ehdm [Rushby 1991,Rushby 1992]. Rushby's model is more generalthan ours, but assumes a tighter degree of synchro-nization where voting takes place after every taskexecution. In addition, Shankar has undertakenthe formalization of a general scheme for model-ing fault-tolerant clock synchronization algorithms[Shankar 1991, Shankar 1992]. Several e�orts inhardware veri�cation are likewise relevant. Bevierand Young have veri�ed a circuit design for perform-ing interactive consistency [Bevier 1991], while Sri-vas and Bickford have carried out a similar activity[Srivas 1991]. Schubert and Levitt have veri�ed thedesign of processor support circuitry, namely a mem-ory management unit [Schubert 1991].2 Modeling ApproachThe speci�cation of the Reliable Computing Plat-form (RCP) is based on state machine concepts. Asystem state models the memory contents of all pro-cessors as well as auxiliary variables such as the faultstatus of each processor. This latter type of infor-mation may not be observable by a running system,but provides a way to express precise speci�cations.System behavior is described by specifying an initialstate and the allowable transitions from one stateto another. A transition speci�cation must deter-mine (or constrain) the allowable destination statesin terms of the current state and current inputs. Theintended interpretation is that each component of thestate models the local state of one processor and itsassociated hardware.RCP speci�cations are given in relational form.This enables one to leave unspeci�ed the behaviorof a faulty component. Consider the example below.Rtran : function[State;State ! bool] =(� s; t : nonfaulty(s(i)) � t(i) = f(s(i)))In the relation Rtran, if component i of state s isnonfaulty, then component i of the next state t isconstrained to equal f(s(i)). For other values of i,that is, when s(i) is faulty, the next state value t(i) isunspeci�ed. Any behavior of the faulty componentis acceptable in the speci�cation de�ned by Rtran.It is important to note that the modeling of com-ponent hardware faults is for speci�cation purposesonly and re
ects no self-cognizance on the part ofthe running system. We assume a nonrecon�gurable

architecture that is capable of masking the e�ects offaults, but makes no attempt to detect or diagnosethose faults. Transient fault recovery is the result ofan automatic, continuous voting process; no explicitinvocation is involved.2.1 RCP State MachinesThe RCP speci�cation consists of four separate mod-els of the system: Uniprocessor System (US), Repli-cated Synchronous (RS), Distributed Synchronous(DS), Distributed Asynchronous (DA). Each of thesespeci�cations is in some sense complete; however,they are written at di�erent levels of abstraction anddescribe the behavior of the system with di�erent de-grees of detail.1. Uniprocessor System layer (US). This con-stitutes the top-level speci�cation of the func-tional system behavior de�ned in terms of anidealized, fault-free computation mechanism.This speci�cation is the correctness criterion tobe met by all lower level designs.2. Replicated Synchronous layer (RS).Proces-sors are replicated and the state machine makesglobal transitions as if all processors were per-fectly synchronized. Interprocessor communica-tion is implicit at this layer. Fault tolerance isachieved using exact-match voting on the resultscomputed by the replicated processors operatingon identical inputs.3. Distributed Synchronous layer (DS). Next,the interprocessor communication mechanism ismodeled and transitions for the RS layer ma-chine are broken into a series of subtransitions.Activity on the separate processors is still as-sumed to occur synchronously. Interprocessorcommunication is accomplished using a simplemailbox scheme.4. Distributed Asynchronous layer (DA). Fi-nally, the lowest layer relaxes the assumption ofsynchrony and allows each processor to run onits own independent clock. Clock time and realtime are introduced into the modeling formal-ism. The DA machine requires an underlyingclock synchronization mechanism.Most of this paper will concentrate on the DA layerspeci�cation and its proof.The basic design strategy is to use a fault-tolerantclock synchronization algorithm as the foundationfor the operating system, providing a global timebase for the system. Although the synchronization is87

not perfect, it is possible to develop a reliable com-munications scheme where the system clock skew isstrictly bounded. For all working clocks p and q, thesynchronization algorithm provides a bounded clockskew � between p and q, assuming that the numberof faulty clocks, say m, does not exceed (nrep�1)=3,where nrep is the number of replicated processors.This property enables a simple communications pro-tocol to be established whereby the receiver waitsuntil maxb + � after a pre-determined broadcasttime before reading a message (maxb is the maxi-mum communication delay).Each processor in the system executes the sameset of application tasks during every cycle of a con-tinuously repeating task schedule. A schedule com-prises a �xed number of frames, each frame timeunits of time long. A frame is further decomposedinto four phases: compute, broadcast, vote and sync.During the compute phase, all of the applicationstasks scheduled for this frame are executed.2 Theresults of all tasks that are to be voted this frameare then loaded into the outgoing mailbox, initiatinga broadcast send operation. During the next phase,the broadcast phase, the system merely waits a su�-cient amount of time (maxb + �) to allow all of themessages to be delivered. During the vote phase,each processor retrieves all of the replicated datafrom each processor and performs a voting operation.Typically, majority voting is used for each of the se-lected state elements. The processor then replacesits local memory with the voted values. Finally, theclock synchronization algorithm is executed duringthe sync phase. Although conceptually this can beperformed in either software or hardware, we intendto use a hardware implementation.2.2 Extended State Machine ModelFormalizing the behavior of the Distributed Asyn-chronous layer requires a means of incorporatingtime. We accomplish this by formulating an ex-tended state machine model that includes a notionof local clock time for each processor. It also recog-nizes several types of transitions or operations thatcan be invoked by each processor. The type of oper-ation dictates which special constraints are imposedon state transitions for certain components.The time-extended state machine model allows forautonomous local clocks on each processor to bemodeled using snapshots of clock time coincidingwith state transitions. Clock values within a state2Multi-rate scheduling is accomplished in RCP by having atask execute every n frames, where nmay be chosen di�erentlyfor each task.

represent the time at which the last transition oc-curred (time current state was entered). If a statewas entered by processor p at time T and is occu-pied for a duration D, the next transition occurs forp at time T +D and this clock value is recorded forp in the next state. A function cp(T) is assumedto map local clock values for processor p into realtime. Notationally, s(i):lclock refers to the (logical)clock-time snapshot of processor i's clock in state s.Clocks may become skewed in real time. Conse-quently, the occurrence of corresponding events ondi�erent processors may be skewed in real time. Astate transition for the DA state machine correspondsto an aggregate transition in which each processorexperiences the same event, such as completing onephase of a frame and beginning the next. Eachprocessor may experience the event at di�erent realtimes and even di�erent clock times if duration val-ues are not identical.Four classes of operations are distinguished:1. L: Purely local processing that involves nobroadcast communication or mailbox access.2. B: Broadcast communication where a send isinitiated when the state is entered and must becompleted before the next transition.3. R: Local processing that involves no send op-erations, but does include reading of mailboxvalues.4. C: Clock synchronization operations that maycause the local clock to be adjusted and appearto be discontinuous.We make the simplifying assumption that the du-ration spent in each state, except those of type C,is nominally a �xed amount of clock time. Al-lowances need to be made, however, for small vari-ations in the actual clock time used by real proces-sors. Thus if � is the maximum rate of variation andDI ; DA are the intended and actual durations, thenjDA �DI j � �DI must hold.2.3 The Proof MethodThe proof method is a variation of the classical al-gebraic technique of showing that a homomorphismexists. Such a proof can be visualized as showingthat a diagram \commutes" (�gure 3). Considertwo adjacent levels of abstraction, called the top andbottom levels for convenience. At the top level wehave a current state, s0, a destination state, t0, anda transition that relates the two. The properties ofthe transition are given as a mathematical relation,88

66 -- mapmap Nbottom(s; t) ts Ntop(s0; t0) t0s0
Figure 3: States, transitions, and mappings.Ntop(s0; t0). Similarly, the bottom level consists ofstates, s and t, and a transition that relates the two,Nbottom(s; t). The state values at the bottom levelare related to the state values at the top level byway of a mapping function, map. To establish thatthe bottom level implements the top level one mustshow that the diagram commutes (in a sense meantfor relations instead of functions):Nbottom(s; t) � Ntop(map(s);map(t))where map(s) = s0 and map(t) = t0 in the diagram.One must also show that initial states map up:Ibottom(s) � Itop(map(s))An additional consideration in constructing suchproofs is that only states reachable from an initialstate are relevant. Thus, it su�ces to prove a con-ditional form of commutativity that assumes transi-tions always begin from reachable states. A weakerform of the theorem is then called for:R(s) ^Nbottom(s; t) � Ntop(map(s);map(t))where R is a reachability predicate. This form en-ables proofs that proceed by �rst establishing stateinvariants. Each invariant is shown to hold for allreachable states using a specialized induction schemaand then invoked as a lemma in the main proof.By carrying out such proofs for each adjacent pairof speci�cation layers in �gure 1, we construct a tran-sitive argument that the lowest layer correctly im-plements the top-most layer. This is equivalent to adirect proof from bottom to top using the functionalcomposition of all the mappings. Such a large proofis di�cult to accomplish in practice; hence the useof a layered approach.2.4 Ehdm Language and Veri�cationSystemDesign veri�cation in RCP has been carried outusing Ehdm. The Ehdm veri�cation system

[von Henke 1988] is a mature tool, which has beenunder development by SRI International since 1983and followed their earlier work on HDM. It comprisesa highly integrated environment for formal systemdevelopment. The speci�cation language is based ona higher-order logic with features supporting modulestructure and parameterization. An operational sub-set of the language can be automatically translatedto Ada.Ehdm contains an automated theorem prover tosupport proving in the higher-order logic. Decisionprocedures for several arithmetic domains are em-bedded in the system. Users invoke the prover bywriting a proof directive in the speci�cation lan-guage, stating explicit premises and any necessarysubstitutions.3 Clock Time and Real TimeIn this section we discuss the synchronization theoryupon which the DA speci�cation depends. Althoughthe RCP architecture does not depend on any partic-ular clock synchronization algorithm, we have usedthe speci�cation for the interactive consistency algo-rithm (ICA) [Lamport 1985] since Ehdm speci�ca-tions for ICA already exist [Rushby 1989].The formal de�nition of a clock is fundamental. Aclock can be modeled as a function from real time tto clock time T : C(t) = T or as a function from clocktime to real time: c(T) = t.3 Since the ICA theorywas expressed in terms of the latter, we will also bemodeling clocks as functions from clock time to realtime. We must be careful to distinguish between anuncorrected clock and a clock being resynchronizedperiodically. We use the notation c(T) for an uncor-rected clock and rt(i)(T) to represent a synchronizedclock during its ith frame.43.1 Fault Model for ClocksIn addition to requirements conditioned on having anonfaulty processor, the DA speci�cations are con-cerned with having a nonfaulty clock as well. It isassumed that the clock is an independent piece ofhardware whose faults can be isolated from thoseof the corresponding processor. Although some im-plementations of a fault-tolerant architecture suchas RCP could execute part of the clock synchro-nization function in software, thereby making clock3We will use the now standard convention of representingclock time with capital letters and real time with lower caseletters.4This di�ers from the notation, c(i)(T), used in[Rushby 1989].89

faults and processor faults mutually dependent, weassume that RCP implementations will have a dedi-cated hardware clock synchronization function. Thismeans that a clock can continue to function prop-erly during a transient fault period on its adjoiningprocessor. The converse is not true, however. Sincethe software executing on a processor depends onthe clock to properly schedule events, a nonfaultyprocessor having a faulty clock may produce errors.Therefore, a one-way fault dependency exists.Good clocks have di�erent drift rates with respectto perfect time. Nevertheless, this drift rate can bebounded. Thus, we de�ne a good clock as one whosedrift rate is strictly bounded by �=2. A clock is\good", i.e., a predicate good clock(T0; Tn) is true,between clock times T0 and Tn i�:8 T1; T2 : T0 � T1 � Tn ^ T0 � T2 � Tn� jcp(T1)� cp(T2)� (T1 � T2)j� �2 � jT1 � T2jThe synchronization algorithm is executed onceevery frame of duration frame time. The notationT (i) is used to represent the start of the ith frameat time T 0 + i � frame time. The notation T 2 R(i)means that T falls in the ith frame, that is,9 � : 0 � � � frame time ^ T = T (i) + �During the ith frame the synchronized clock on pro-cessor p, rtp, is de�ned by rtp(i; T) = cp(T +Corr(i)p),where Corr is the cumulative sum of the correctionsthat have been made to the (logical) clock.Note that in order for a clock to be nonfaulty inthe current frame it is necessary that it has beenworking continuously from time zero5:goodclock(p; T (0) + Corr(0)p ; T (i+1) + Corr(i)p)From these de�nitions we state the condition of hav-ing enough good clocks to maintain synchronization:enough clocks: function[period! bool] =(�i : 3�num good clocks(i;nrep) > 2�nrep)3.2 Clock SynchronizationClock synchronization theory provides two impor-tant properties about the clock synchronization al-gorithm, namely that the skew between good clocksis bounded and that the correction to a good clockis always bounded. The maximum skew is denotedby � and the maximum correction is denoted by �.More formally, for all nonfaulty clocks p and q, twoconditions obtain:5This is a limitation not of RCP, but of existing, mechani-cally veri�ed fault-tolerant clock synchronization theory. Fu-ture work will concentrate on how to make clock synchroniza-tion robust in the presence of transient faults.

S1: 8T 2 R(i) : jrt(i)p (T)� rt(i)q (T)j < �S2: jCorr(i+1)p � Corr(i)p j < �The value of � is determined by several key param-eters of the synchronization system: �; �; �0;m, nrep.The parameter � is a bound on the error in readinganother processor's clock. �0 is an upper bound onthe initial clock skew and m is the maximumnumberof faulty clocks.The main synchronization theorem is:sync thm: Theorem enough clocks(i) �(8 p; q : (8T : T 2 R(i) ^nonfaulty clock(p; i) ^ nonfaulty clock(q; i)� jrt(i)p (T) � rt(i)q (T)j � �))The proof that DA implements DS depends cruciallyupon this theorem.3.3 Implementation RestrictionsRecall that the DA extended state machine modelrecognized four di�erent classes of state transition:L, B, R, C. Although each is used for a di�erent phaseof the frame, the transition types were introducedbecause operation restrictions must be imposed onimplementations to correctly realize the DA speci�-cations. Failure to satisfy these restrictions can ren-der an implementation at odds with the underlyingexecution model, where shared data objects are sub-ject to the problems of concurrency. The set of con-straints on the DA model's implementation concernspossible concurrent accesses to the mailboxes.While a broadcast send operation is in progress,the receivers' mailbox values are unde�ned. If theoperation is allowed su�cient time to complete, themailbox values will match the original values sent. Ifinsu�cient time is allowed, or a broadcast operationis begun immediately following the current one, the�nal mailbox value cannot be assured. Furthermore,we make the additional restriction that all other usesof the mailbox be limited to read-only accesses. Thisprovides a simple su�cient condition for noninter-fering use of the mailboxes, thereby avoiding morecomplex mutual exclusion restrictions.Operation Restrictions. Let s and tbe successive DA states, i be the processorwith the earliest value of ci(s(i):lclock), andj be the processor with the latest value ofcj(t(j):lclock). If s corresponds to a broad-cast (B) operation, all processors must havecompleted the previous operation of type Rby time ci(s(i):lclock), and the next opera-tion of type B can begin no earlier than timecj(t(j):lclock). No processor may write to90

its mailbox during an operation of type Bor R.By introducing a prescribed discipline on the useof mailboxes, we ensure that the axiom describingbroadcast communication can be legitimately usedin the DA proof. Although the restrictions are ex-pressed in terms of real time inequalities over allprocessors' clocks, it is possible to derive su�cientconditions that satisfy the restrictions and can beestablished from local processor speci�cations only,assuming a clock synchronization mechanism is inplace.4 Design Speci�cationsThe RCP speci�cations are expressed in terms ofsome common types and constants, declared inEhdm as follows:Pstate: Type (* computation state *)inputs: Type (* sensor inputs *)outputs: Type (* actuator outputs *)nrep: nat (* number of processors *)Mailboxes and their unit of information exchangeare provided with types:MB : Type (* mailbox entry *)MBvec: Type = array [processors] of MBThis scheme provides one slot in the mailbox arrayfor each replicated processor.In the following, we present a sketch of the spec-i�cations for the US and DA layers. To keep thepresentation brief, we omit the RS and DS speci�ca-tions. Details can be found in [Butler 1992].4.1 US Speci�cationThe US speci�cation is very simple:Nus: function[Pstate;Pstate; inputs! bool] =(� s; t; u : t = fc(u; s))The function Nus de�nes the transition relation be-tween the current state and the next state. We re-quire that the computation performed by the unipro-cessor system be deterministic and can be mod-eled by a function fc : inputs � Pstate ! Pstate.To �t the relational, nondeterministic state machinemodel we simply equate Nus(s; t; u) to the predicatet = fc(u; s).External system outputs are selected from the val-ues computed by fc. The function fa : Pstate !outputs denotes the selection of state variable values

to be sent to the actuators. The type outputs repre-sents a composite of actuator output types.While there is no explicit mention of time in theUS model, it is intended that a transition correspondto one frame of the execution schedule.The constant initial proc state represents the initialPstate value when computation begins.initial us: function[Pstate! bool] =(� s : s = initial proc state)Although the initial state value is unique, initial us isexpressed in predicate form for consistency with theoverall relational method of speci�cation.4.2 DA Speci�cationThe DA speci�cation permits each processor to runasynchronously. Every processor in the system hasits own clock and task executions on one processortake place at di�erent times than on other processors.Nevertheless, the model at this level explicitly takesadvantage of the fact that the clocks of the systemare synchronized to within a bounded skew �.da proc state: Type =Record healthy : nat;proc state : Pstate;mailbox : MBvec;lclock : logical clocktime;cum delta : numberend recordda proc array: Type =array [processors] of da proc stateDAstate: Type =Record phase : phases;sync period : nat;proc : da proc arrayend recordThe phase �eld of a DAstate indicates whether thecurrent phase of the state machine is compute, broad-cast, vote, or sync. The sync period �eld holds thecurrent (unbounded) frame number.The state for a single processor is given by a recordnamed da proc state. The �rst �eld of the record ishealthy, which is 0 when a processor is faulty. Oth-erwise, it indicates the (unbounded) number of statetransitions since the last transient fault. A perma-nently faulty processor would have zero in this �eldfor all subsequent frames. A processor that is recov-ering from a transient fault is indicated by a valueof healthy less than the constant recovery period. Aprocessor is said to be working whenever healthy �recovery period. The proc state �eld of the record is91

6?���������������
6

-������������,,,..
....... CC � cum deltada rtp(T)real time

clock time (T) cp(T)
Figure 4: Relationship between cp and da rt.the computation state of the processor. The mail-box �eld of the record denotes the incoming mailboxmechanism on each processor.The lclock �eld of a DAstate stores the currentvalue of the processor's local clock. The real-time corresponding to this clock time can be foundthrough use of the auxiliary function da rt.da rt: function[DAstate;processors;logical clocktime! realtime] =(�da; p; T : cp(T +da:proc(p):cum delta))This function corresponds to the rt function of theclock synchronization theory. Thus, da rt(s; p; T)yields the real time corresponding to processor p'ssynchronized clock. Given a clock time T in the cur-rent frame (s.sync period), da rt returns the real-timeat which processor p's clock reads T . The currentvalue of the cumulative correction is stored in the�eld cum delta.Every frame the clock synchronization algorithmis executed, and an adjustment given by the Corrfunction of the clock synchronization theory is addedto cum delta. Figure 4 illustrates the relationshipamong cp, da rt, and cum delta.The speci�cation of time-critical behavior in theDA model is accomplished using the da rt function.For example, the broadcast received function is ex-pressed in terms of da rt:broadcast received:function[DAstate;DAstate;processors! bool] =(� s; t; q : (8 p :(s:proc(p):healthy> 0^ da rt(s; p; s:proc(p):lclock)+max comm delay� da rt(t; q; t:proc(q):lclock))� t:proc(q):mailbox(p) =s:proc(p):mailbox(p)))

Nda: function[DAstate;DAstate;inputs! bool] =(� s; t; u : enough hardware(t)^ t:phase = next phase(s:phase)^ (8 i : if s:phase = syncthen N sda(s; t; i)else t:proc(i):healthy=s:proc(i):healthy^ t:proc(i):cum delta =s:proc(i):cum delta^ t:sync period = s:sync period^ (nonfaulty clock(i;s:sync period) �clock advanced(s:proc(i):lclock;t:proc(i):lclock;duration(s:phase))^ (s:phase = compute �N cda(s; t; u; i))^ (s:phase = broadcast �N bda(s; t; i))^ (s:phase = vote �N vda(s; t; i)))end if))Figure 5: DA transition relation.Thus, the data in the incoming bin p on proces-sor q is de�ned to be equal to the value broad-cast by p, s:proc(p):mailbox(p), only when the realtime on the receiving end, da rt(t; q; t:proc(q):lclock),is greater than the real time at which thesend was initiated, da rt(s; p; s:proc(p):lclock), plusmax comm delay. This speci�cation anticipates thedesign of a communications system that can delivera message within max comm delay units of time.In the DA level there is no single transition thatcovers the entire frame. There is only a phase-basedstate transition relation, Nda, shown in �gure 5.Note that the transition to a new state is only validwhen enough hardware holds in the next state:enough hardware:function[DAstate! bool] =(� t : maj working(t) ^enough clocks(t:sync period))The transition relationNda is de�ned in terms of foursubrelations (not shown): N cda, N bda, N vda and N sda,each of which applies to a particular phase type.As de�ned by the compute phase relation N cda,the proc state �eld is updated with the results oftask computation, fc(u; s:proc(i):proc state), and themailbox is loaded with the subset of these results tobe broadcast. Note that each nonfaulty replicatedprocessor is required to behave deterministicallywithrespect to task computation; in particular, fc is thesame computation function as speci�ed in the US92

layer. Moreover, the local clock time is changed inthe new state. This is accomplished by the predicateclock advanced, which is not based on a simple in-crementation operation because the number of clockcycles consumed by an instruction stream will ex-hibit a small amount of variation on real processors.The function clock advanced accounts for this vari-ability, meaning the start of the next phase is notwholly determined by the start time of the currentphase.clock advanced:function[logical clocktime; logical clocktime;number! bool] =(� X;Y;D : X +D � (1� �) � Y ^Y � X +D � (1 + �))� represents the maximum rate at which one pro-cessor's execution time over a phase can vary fromthe nominal amount given by the duration function.� is intended to be a nonnegative fractional value,0 � � < 1. The nominal amount of time spent ineach phase is speci�ed by a function named duration:duration: function[phases! logical clocktime]The predicate initial da puts forth the conditionsfor a valid initial state. The initial phase is set tocompute and the initial sync period is set to zero.Each element of the DA state array has its healthy�eld equal to recovery period and its proc state �eldequal to initial proc state.initial da: function[DAstate! bool] =(� s : s:phase = compute ^s:sync period = 0 ^(8 i : s:proc(i):healthy= recovery period ^s:proc(i):proc state = initial proc state ^s:proc(i):cum delta = 0 ^s:proc(i):lclock= 0 ^nonfaulty clock(i; 0)))By initializing the healthy �elds to the constantrecovery period we are starting the system with allprocessors working. Note that the mailbox �elds arenot initialized; any mailbox values can appear in avalid initial DAstate.5 Summary of System ProofFigure 6 shows the complete state machine hierar-chy and the relationships of transitions within theaggregate model. By performing three layer-to-layerstate machine implementation proofs, the states ofDA, the lowest layer, are shown to correctly map tothose of US, the highest layer. This means that anyimplementation satisfying the DA speci�cation will

�
���
���
���
�� �
���
���
���
���
���
�� �
�� �
�� �
�� �
��-- 6666 66666 ----- - - -SyncVoteBroadcastCompute
RSmapDAmapDSmapDADSRS

US
Figure 6: RCP state machine and proof hier-archy.likewise satisfy US under our chosen interpretation,which is given by a functional composition:DAmap �DSmap � RSmap5.1 Overall HierarchyThe two theorems required to establish that RS im-plements US are the following.RS frame commutes: Theoremreachable(s) ^Nrs(s; t; u) �Nus(RSmap(s);RSmap(t); u)RS initial maps: Theoreminitial rs(s) � initial us(RSmap(s))The theorem RS frame commutes shows that a suc-cessive pair of reachable RS states can be mapped byRSmap into a successive pair of US states (upper tierof �gure 6 commutes). The theorem RS initial mapsshows that an initial RS state can be mapped intoan initial US state.To establish that DS implements RS, the followingformulas must be proved.DS frame commutes: Theorems:phase = compute ^ frame N ds(s; t; u) �Nrs(DSmap(s);DSmap(t); u)DS initial maps: Theoreminitial ds(s) � initial rs(DSmap(s))Note that DS transitions have �ner granularity thanRS transitions: one per phase (four per frame).Therefore, to follow the proof paradigm, we mustconsider only DS states found at the beginning of93

each frame, namely those whose phase is compute.frame N ds is a predicate that composes four sequen-tial phase transitions using Nds.frame N ds: function[DSstate;DSstate;inputs! bool] =(� s; t; u : (9 x;y; z :Nds(s; x; u) ^Nds(x; y; u) ^Nds(y; z; u) ^Nds(z; t; u)))Using this device, we can show that the second tierof �gure 6 commutes.Finally, to establish that DA implements DS, thefollowing formulas must be proved:phase commutes: Theoremreachable(s) ^Nda(s; t; u) �Nds(DAmap(s);DAmap(t); u)DA initial maps: Theoreminitial da(s) � initial ds(DAmap(s))Since DA and DS transitions are both one per phase,the proof is completed by showing that each of thefour lower cells of �gure 6 commutes.5.2 DA Layer ProofWe provide a brief sketch of the key parts of the DAto DS proof. First, note that the two speci�cationsare very similar in structure. The primary di�er-ence is that the DS speci�cation lacks all featuresrelated to clock time and real time. A DSstate struc-ture is similar to a DAstate, lacking only the lclock,cum delta, and sync period �elds. Thus, in the DAto DS mapping function, these �elds are not mapped(i.e., are abstracted away) and all of the other �eldsare mapped identically.Additionally, the DS transition relation is verysimilar to Nda:Nds: function[DSstate;DSstate;inputs! bool] =(� s; t; u : maj working(t)^ t:phase = next phase(s:phase)^ (8 i :if s:phase = syncthen N sds(s; t; i)else t:proc(i):healthy=s:proc(i):healthy^ (s:phase = compute �N cds(s; t; u; i))^ (s:phase = broadcast �N bds(s; t; i))^ (s:phase = vote �N vds(s; t; i))end if))

The phase commutes theorem must be shown tohold for all four phases. Thus, the proof is decom-posed into four separate cases, each of which is han-dled by a lemma of the form:phase com X : Lemmas:phase = X ^Nda(s; t; u) �Nds(DAmap(s);DAmap(t); u)where X is any one of fcompute, broadcast,vote, syncg. The proof of this theorem requiresthe expansion of the Nda relation and show-ing that the resulting formula logically impliesNds(DAmap(s);DAmap(t); u).The proof of each lemma phase com X is facili-tated by using a common, general scheme for eachphase that further decomposes the proof by meansof four subordinate lemmas. The general form ofthese lemmas is as follows:Lemma 1: s:phase = X ^Nda(s; t; u) �(8 i : NXda(s; t; i))Lemma 2: s:phase = X ^NXda(s; t; i) �NXds(DAmap(s);DAmap(t); i)Lemma 3: ss:phase = X ^DS:maj working(tt) ^(8 i : NXds(ss; tt; i)) �Nds(ss; tt; u)Lemma 4: s:phase = X ^Nda(s; t; u) �DS:maj working(DAmap(t))A few di�erences exist among the lemmas for the fourphases, but they adhere to this scheme fairly closely.The phase com X lemma follows by chaining the fourlemmas together:Nda(s; t; u) � (8 i : NXda(s; t; i)) �(8 i : NXds(DAmap(s);DAmap(t); i)) �Nds(DAmap(s);DAmap(t); u)In three of the four cases above, proofs for the lem-mas are elementary. The proof of Lemma 1 followsdirectly from the de�nition of Nda. Lemma 3 followsdirectly from the de�nition of Nds. Lemma 4 followsfrom the de�nition of Nda, enough hardware, and thebasic mapping lemmas.Furthermore, for three of the four phases, the proofof Lemma 2 is straightforward. For all but the broad-cast phase, Lemma 2 follows from the de�nition ofNXds, NXda, and the basic mapping lemmas.However, in the broadcast phase, Lemma 2 from thescheme above, which is named com broadcast 2, is amuch deeper theorem. The broadcast phase is wherethe e�ects of asynchrony are felt: we must show thatinterprocessor communications are properly received94

in the presence of asynchronously operating proces-sors. Without clock synchronization we would be un-able to assert that broadcast data is received. Hencethe need to invoke clock synchronization theory andits attendant reasoning over inequalities of time.The lemma com broadcast 2 deals with the maindi�erence between the DA level and the DS level|thetiming constraint in the function broadcast received.The timing constraintda rt(s; p; s:proc(p):lclock)+max comm delay �da rt(t; q; t:proc(q):lclock)must be satis�ed to show that the DS level analogof broadcast received holds. A key lemma relatingreal times on two processors is instrumental for thispurpose:ELT: LemmaT2 � T1 + bb ^ (T1 � T 0)^ (bb � T 0) ^ T2 2 R(sp) ^ T1 2 R(sp)^ nonfaulty clock(p; sp)^ nonfaulty clock(q; sp)^ enough clocks(sp)� rt(sp)p (T2) �rt(sp)q (T1) + (1� �2) � jbbj � �This lemma establishes an important property oftimed events in the presence of a fault-tolerant clocksynchronization algorithm. Suppose that on proces-sor q an event occurs at T1 according to its own clockand another event occurs on processor p at time T2according to its own clock. Then, assuming that theclock times fall within the current frame and enoughclocks are nonfaulty, then the following is true aboutthe real times of the events:rt(sp)p (T2) � rt(sp)q (T1) + (1� �2) � jbbj � �where bb = T2 � T1, T1 = s:proc(p):lclock, and T2 =t:proc(q):lclock.If we apply this lemma to the broadcast phase, let-ting T1 be the time that the sender loads his outgo-ing mailbox bin and T2 be the earliest time that thereceivers can read their mailboxes (i.e., at the start ofthe vote phase), we know that these events are sepa-rated in time by more than (1� �2)�jbbj��. By choos-ing the value bb = duration(broadcast) in such a waythat this real time quantity exceeds max comm delay,accounting for � variation as well, we can prove thatall broadcast messages are properly received.5.3 Proof MechanizationAll proofs sketched above as well as the other RCPproofs have been carried out with the assistance ofEhdm [Butler 1992]. Although the �rst phase of this

work was accomplished without the use of an auto-mated theorem prover [Di Vito 1990], we found theuse of Ehdm bene�cial to this second phase of workfor several reasons.� Increasingly detailed speci�cations emerge inthe lower level models.� The strictness of the Ehdm language forced usto elaborate the design more carefully.� Most proofs are not very deep but contain sub-stantial detail. Without a mechanical proofchecker, it would be far too easy to overlook a
aw in the proofs.� The proof support environment ofEhdm assuresus that our proof chains are complete and wehave not overlooked some unproved lemmas.� The decision procedures for linear arithmeticand propositional calculus relieved us of theneed to reduce many formulas to primitiveaxioms of arithmetic. Especially useful wasEhdm's reasoning ability for inequalities.6 ConclusionWe have described a formalization of the synchroniz-ing aspects of a reliable computing platform (RCP).The top level speci�cation is extremely general andshould serve as a model for many fault-tolerant sys-tem designs. The successive re�nements in the lowerlevels of abstraction introduce, �rst, processor repli-cation and voting, second, interprocess communica-tion by use of dedicated mailboxes, and �nally, theasynchrony due to separate clocks in the system.Key features of the overall RCP work completedduring Phase 2 and improvements over the results ofPhase 1 include the following.� Speci�cation of redundancy management andtransient fault recovery are based on a verygeneral model of fault-tolerant computing sim-ilar to one proposed by Rushby [Rushby 1991,Rushby 1992], but using a frame-based ratherthan task-based granularity of synchronization.� Speci�cation of the asynchronous layer designuses modeling techniques based on a time-extended state machine approach. This methodallows us to build on previous work that for-malized clock synchronization mechanisms andtheir properties.� Formulation of the RCP speci�cations is basedon a straightforward fault model, providing a95

clean interface to the realm of probabilistic reli-ability models. It is only necessary to determinethe probability of having a majority of work-ing processors and a two-thirds majority of non-faulty clocks.� A four-layer tier of speci�cations has been com-pletely proved to the standards of rigor of theEhdm mechanical proof system. The full set ofproofs can be run on a Sun SPARCstation inless than one hour.� Important constraints on lower level design andimplementation constructs have been identi�edand investigated.Based on the results obtained thus far, work willcontinue to a Phase 3 e�ort, which will concentrateon completing design formalizations and develop thetechniques needed to produce veri�ed implementa-tions of RCP architectures.AcknowledgementsThe authors would like to acknowledge the manyhelpful suggestions given by Dr. John Rushby ofSRI International. His suggestions during the earlyphases of model formulation and decomposition leadto a signi�cantly more manageable proof activity.We are also grateful to John and Sam Owre for thetimely assistance given in the use of the Ehdm sys-tem. We are likewise grateful to Paul Miner of NASALangley for his careful review of our work. This re-search was supported (in part) by the National Aero-nautics and Space Administration under ContractNo. NAS1-19341.References[Bevier 1991] William R. Bevier and William D.Young. The proof of correctness of a fault-tolerantcircuit design. In Second IFIP Conference onDependable Computing For Critical Applications,pages 107{114, Tucson, Arizona, February 1991.[Butler 1991] Ricky W. Butler, James L. Caldwell,and Ben L. Di Vito. Design strategy for a formallyveri�ed reliable computing platform. In 6th An-nual Conference on Computer Assurance (COM-PASS 91), Gaithersburg, MD, June 1991.[Butler 1992] Ricky W. Butler and Ben L. Di Vito.Formal design and veri�cation of a reliable com-puting platform for real-time control (phase 2 re-sults). NASA Technical Memorandum 104196,January 1992.

[Di Vito 1990] Ben L. Di Vito, Ricky W. Butler, andJames L. Caldwell, II. Formal design and veri�ca-tion of a reliable computing platform for real-timecontrol (phase 1 results). NASA Technical Mem-orandum 102716, October 1990.[Di Vito 1992] Ben L. Di Vito, Ricky W. Butler,and James L. Caldwell. High level design proofof a reliable computing platform. In Depend-able Computing for Critical Applications 2, De-pendable Computing and Fault-Tolerant Systems,pages 279{306. Springer Verlag, Wien New York,1992. Also presented at 2nd IFIP Working Con-ference on Dependable Computing for Critical Ap-plications, Tucson, AZ, Feb. 18{20, 1991, pp. 124{136.[Goldberg 1984] Jack Goldberg et al. Developmentand analysis of the software implemented fault-tolerance (SIFT) computer. NASA Contractor Re-port 172146, 1984.[Hopkins 1978] Albert L. Hopkins, Jr., T. BasilSmith, III, and Jaynarayan H. Lala. FTMP |A highly reliable fault-tolerant multiprocessor foraircraft. Proceedings of the IEEE, 66(10):1221{1239, October 1978.[Kopetz 1989] H. Kopetz, A. Damm, C. Koza,M. Mulazzani, W. Schwabl, C. Senft, and R. Zain-linger. Distributed fault-tolerant real-time sys-tems: The Mars approach. IEEE Micro, 9:25{40,February 1989.[Lala 1986] Jaynarayan H. Lala, L. S. Alger, R. J.Gauthier, and M. J. Dzwonczyk. A Fault-TolerantProcessor to meet rigorous failure requirements.Technical Report CSDL-P-2705, Charles StarkDraper Lab., Inc., July 1986.[Lamport 1982] Leslie Lamport, Robert Shostak,and Marshall Pease. The Byzantine Generalsproblem. ACM Transactions on ProgrammingLanguages and Systems, 4(3):382{401, July 1982.[Lamport 1985] Leslie Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence offaults. Journal of the ACM, 32(1):52{78, January1985.[Mancini 1988] L. V. Mancini and G. Pappalardo.Towards a theory of replicated processing. InLecture Notes in Computer Science, volume 331,pages 175{192. Springer Verlag, 1988.[Moser 1987] Louise Moser, Michael Melliar-Smith,and Richard Schwartz. Design veri�cation of96

SIFT. NASA Contractor Report 4097, September1987.[NASA 1983] NASA. Peer review of a formal veri�-cation/design proof methodology. NASA Confer-ence Publication 2377, July 1983.[Rushby 1989] John Rushby and Friedrich vonHenke. Formal veri�cation of a fault-tolerant clocksynchronization algorithm. NASA Contractor Re-port 4239, June 1989.[Rushby 1991] John Rushby. Formal speci�cationand veri�cation of a fault-masking and transient-recovery model for digital
ight-control systems.NASA Contractor Report 4384, July 1991.[Rushby 1992] John Rushby. Formal speci�cationand veri�cation of a fault-masking and transient-recovery model for digital
ight-control systems.In Second International Symposium on FormalTechniques in Real Time and Fault Tolerant Sys-tems, volume 571 of Lecture Notes in Com-puter Science, pages 237{258. Springer Verlag, Ni-jmegen, The Netherlands, January 1992.[Schubert 1991] Thomas Schubert and Karl Levitt.Veri�cation of memory management units. In Sec-ond IFIP Conference on Dependable ComputingFor Critical Applications, pages 115{123, Tucson,Arizona, February 1991.[Shankar 1991] Natarajan Shankar. Mechanical ver-i�cation of a schematic Byzantine clock synchro-nization algorithm. NASA Contractor Report4386, July 1991.[Shankar 1992] Natarajan Shankar. Mechanical ver-i�cation of a generalized protocol for byzantinefault-tolerant clock synchronization. In Second In-ternational Symposium on Formal Techniques inReal Time and Fault Tolerant Systems, volume 571of Lecture Notes in Computer Science, pages 217{236. Springer Verlag, Nijmegen, The Netherlands,January 1992.[Srivas 1991] Mandayam Srivas and Mark Bickford.Veri�cation of the FtCayuga fault-tolerant micro-processor system (Volume 1: A case study in theo-rem prover-based veri�cation). NASA ContractorReport 4381, July 1991.[von Henke 1988] F. W. von Henke, J. S. Crow,R. Lee, J. M. Rushby, and R. A. Whitehurst.Ehdm veri�cation environment: An overview. In11th National Computer Security Conference, Bal-timore, Maryland, 1988.

[Walter 1985] C. J. Walter, R. M. Kieckhafer, andA. M. Finn. MAFT: A multicomputer architecturefor fault-tolerance in real-time control systems. InIEEE Real-Time Systems Symposium, December1985.

97

